Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

نویسندگان

  • Elahe Mirarab Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
  • Mehdi Khaksari School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
  • Vida Hojati Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
چکیده مقاله:

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestatin on apoptosis, protein expression and reactive astrogliosis level in hippocampal CA1 region of rat following transient global cerebral ischemia.Materials and Methods: Forty-eight male Wistar rats were randomly assigned into 4 groups (sham, ischemia/reperfusion, ischemia/reperfusion+ Obestatin 1, and 5 µg/kg, n=12). Ischemia induced occlusion of both common carotid arteries for 20 min. Obestatin 1 and 5 µg/kg were injected intraperitoneally at the beginning of reperfusion period and 24 and 48 hr after reperfusion. Assessment of the antioxidant enzymes and tumor necrosis factor alpha (TNF-α) was performed by ELISA method. Caspase-3 and glial fibrillary acidic protein (GFAP) proteins expression levels were evaluated by immunohistochemical staining 7 days after ischemia.Results: Based on the result of the current study, lower superoxide dismutase (SOD) and glutathione (GSH) (P<0.05) and higher malondialdehyde (MDA) and TNF-α levels were observed in the ischemia group than those of the sham group (P<0.01). Obestatin treatment could increase both SOD and GSH (P<0.05) and reduce MDA and TNF-α (P<0.05) versus the ischemia group. Moreover, obestatin could significantly decrease caspase-3 and GFAP positive cells in the CA1 region of hippocampus (P<0.01). Conclusion: Obestatin exerts protective effects against ischemia injury by inhibition of astrocytes activation and decreases neuronal cell apoptosis via its antioxidant properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Usnic Acid on Apoptosis and Expression of Bax and Bcl-2 Proteins in Hippocampal CA1 Neurons Following Cerebral Ischemia-Reperfusion

Introduction: Cerebral ischemia-reperfusion causes complex pathological mechanisms that lead to tissue damage, such as neuronal apoptosis. Usnic acid is a secondary metabolite of lichen and has various biological properties including antioxidant and anti-inflammatory activities. This study aimed to investigate the neuroprotective effects of usnic acid on apoptotic cell death and apoptotic-relat...

متن کامل

Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms

Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...

متن کامل

Carthamus tinctorius L. ameliorates brain injury followed by cerebral ischemia-reperfusion in rats by antioxidative and anti-inflammatory mechanisms

Objective(s): Carthamus tinctorius L. (CT) or saffloweris widely used in traditional Chinese medicine. This study investigated the effects of CT extract (CTE) on ischemia–reperfusion (I/R) brain injury and elucidated the underlying mechanism. Materials and Methods: The I/R model was conducted by occlusion of both common carotid arteries and right middle cerebral artery for 90 min followed by 24...

متن کامل

P51: Anti-Inflammatory Curcumin Effect on Neuronal Number in the CA1 Area Following Global Cerebral Ischemia

Global cerebral ischemia (GCI) leads to inflammation and neuronal death in CA1. Curcumin with neuroprotective and anti-inflammatory properties is a potential candidate for suppressing cell death. The aim of this study was to determine the effects of curcumin on neuronal number in the CA1 area following GCI. 28 Sprague-Dawley male rats were randomly assigned into four groups including sham, cont...

متن کامل

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 22  شماره 6

صفحات  617- 622

تاریخ انتشار 2019-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023